试题
题目:
(2010·鞍山)如图△OAP,△ABQ均是等腰直角三角形,点P,Q在函数y=
4
x
(x>0)的图象上,直角顶点A,B均在x轴上,则点B的坐标为( )
A.(
2
+1
,0)
B.(
5
+1
,0)
C.(3,0)
D.(
5
-1
,0)
答案
B
解:∵△OAP是等腰直角三角形
∴PA=OA
∴设P点的坐标是(a,a)
把(a,a)代入解析式得到a=2
∴P的坐标是(2,2)
则OA=2
∵△ABQ是等腰直角三角形
∴BQ=AB
∴设Q的纵坐标是b
∴横坐标是b+2
把Q的坐标代入解析式y=
4
x
∴b=
4
b+2
∴b=
5
-1
b+2=
5
-1+2=
5
+1
∴点B的坐标为(
5
+1,0).
故选B.
考点梳理
考点
分析
点评
专题
反比例函数综合题.
由△OAP是等腰直角三角形得到PA=OA,可以设P点的坐标是(a,a),然后把(a,a)代入解析式求出a=2,从而求出P的坐标,接着求出OA的长,再根据△ABQ是等腰直角三角形得到BQ=AB,可以设Q的纵坐标是b,因而横坐标是b+2,把Q的坐标代入解析式即可求出B的坐标.
本题考查了反比例函数的图象的性质以及等腰直角三角形的性质,利用形数结合解决此类问题,是非常有效的方法.
压轴题;数形结合.
找相似题
(2013·荆州)如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线
y=
k
x
(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是( )
(2013·济南)如图,平行四边形OABC的顶点B,C在第一象限,点A的坐标为(3,0),点D为边AB的中点,反比例函数y=
k
x
(x>0)的图象经过C,D两点,若∠COA=α,则k的值等于( )
(2013·黑龙江)如图,Rt△ABC的顶点A在双曲线y=
k
x
的图象上,直角边BC在x轴上,∠ABC=90°,∠ACB=30°,OC=4,连接OA,∠AOB=60°,则k的值是( )
(2012·眉山)已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线
y=
k
x
(x>0)经过D点,交BC的延长线于E点,且OB·AC=160,有下列四个结论:
①双曲线的解析式为
y=
20
x
(x>0);
②E点的坐标是(4,8);
③sin∠COA=
4
5
;
④AC+OB=
12
5
,其中正确的结论有( )
(2012·六盘水)如图为反比例函数
y=
1
x
在第一象限的图象,点A为此图象上的一动点,过点A分别作AB⊥x轴和AC⊥y轴,垂足分别为B,C.则四边形OBAC周长的最小值为( )