试题

题目:
青果学院(2012·遵义)如图,半径为1cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为(  )



答案
C
青果学院解:过点C作CD⊥OB,CE⊥OA,
∵OB=OA,∠AOB=90°,
∴△AOB是等腰直角三角形,
∵OA是直径,
∴∠ACO=90°,
∴△AOC是等腰直角三角形,
∵CE⊥OA,
∴OE=AE,OC=AC,
在Rt△OCE与Rt△ACE中,
OC=AC
OE=AE

∴Rt△OCE≌Rt△ACE,
∵S扇形OEC=S扇形AEC
OC
与弦OC围成的弓形的面积等于
AC
与弦AC所围成的弓形面积,
同理可得,
OC
与弦OC围成的弓形的面积等于
BC
与弦BC所围成的弓形面积,
∴S阴影=S△AOB=
1
2
×1×1=
1
2
cm2
故选C.
考点梳理
扇形面积的计算;等腰直角三角形.
过点C作CD⊥OB,CE⊥OA,则△AOB是等腰直角三角形,由∠ACO=90°,可知△AOC是等腰直角三角形,由HL定理可知Rt△OCE≌Rt△ACE,故可得出S扇形OEC=S扇形AEC
OC
与弦OC围成的弓形的面积等于
AC
与弦AC所围成的弓形面积,S阴影=S△AOB即可得出结论.
本题考查的是扇形面积的计算与等腰直角三角形的判定与性质,根据题意作出辅助线,构造出直角三角形得出S阴影=S△AOB是解答此题的关键.
压轴题;探究型.
找相似题