试题
题目:
已知关于x的一元二次方程2x
2
-
3
x+m=0没有实数根,求m的最小整数值.
答案
解:∵关于x的一元二次方程2x
2
-
3
x+m=0没有实数根,
∴△=(-
3
)2-4×2×m=3-8m<0,
∴m>
3
8
,
∴m可以取得最小整数值为1.
解:∵关于x的一元二次方程2x
2
-
3
x+m=0没有实数根,
∴△=(-
3
)2-4×2×m=3-8m<0,
∴m>
3
8
,
∴m可以取得最小整数值为1.
考点梳理
考点
分析
点评
根的判别式.
根据关于x的一元二次方程2x
2
-
3
x+m=0没有实数根,得出△<0,求出m的取值范围,即可得出m的最小整数值.
本题考查了一元二次方程ax
2
+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b
2
-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.
找相似题
(2013·珠海)已知一元二次方程:①x
2
+2x+3=0,②x
2
-2x-3=0.下列说法正确的是( )
f(x)=
x
x+1
的最大值为
1
2
1
2
.
已知△ABC的三边长分别是a,b,c,其中a=3,c=5,且关于x的一元二次方程x
2
-4x+b=0有两个相等的实数根,判断△ABC的形状.
已知关于x的一元二次方程
(
1
2
k-1)
x
2
-(k+1)x+
1
2
k+1=0
有实数根,求实数k的取值范围.
已知y=
ax-1
3
a
x
2
+4ax+3
的定义域为R,求实数a的取值范围.