试题
题目:
已知关于x的一元二次方程x
2
-2x+k-3=0有两个不相等的实数根,求k的取值范围.
答案
解:∵关于x的一元二次方程x
2
-2x+k-3=0有两个不等的实数根,
∴△=(-2)
2
-4×1×(k-3)>0,
即 16-4k>0,
解得 k<4,
∴k的取值范围为k<4.
解:∵关于x的一元二次方程x
2
-2x+k-3=0有两个不等的实数根,
∴△=(-2)
2
-4×1×(k-3)>0,
即 16-4k>0,
解得 k<4,
∴k的取值范围为k<4.
考点梳理
考点
分析
点评
根的判别式.
若一元二次方程有两不等根,则根的判别式△=b
2
-4ac>0,建立关于k的不等式,求出k的取值范围即可.
本题考查了根的判别式:一元二次方程根的情况与判别式△的关系:(1)△>0·方程有两个不相等的实数根;(2)△=0·方程有两个相等的实数根;(3)△<0·方程没有实数根.
找相似题
(2013·珠海)已知一元二次方程:①x
2
+2x+3=0,②x
2
-2x-3=0.下列说法正确的是( )
f(x)=
x
x+1
的最大值为
1
2
1
2
.
已知△ABC的三边长分别是a,b,c,其中a=3,c=5,且关于x的一元二次方程x
2
-4x+b=0有两个相等的实数根,判断△ABC的形状.
已知关于x的一元二次方程
(
1
2
k-1)
x
2
-(k+1)x+
1
2
k+1=0
有实数根,求实数k的取值范围.
已知y=
ax-1
3
a
x
2
+4ax+3
的定义域为R,求实数a的取值范围.