试题
题目:
关于x的一元二次方程ax
2
+bx-c=0(a≠0)有实数根,则( )
A.b
2
≥4ac
B.b
2
-4ac>0
C.b
2
=4ac
D.b
2
+4ac≥0
答案
A
解:当△=b
2
-4ac≥0时,即b
2
≥4ac,关于x的一元二次方程ax
2
+bx-c=0(a≠0)有实数根.
故选A.
考点梳理
考点
分析
点评
根的判别式.
直接根据判别式的意义进行判断.
本题考查了一元二次方程ax
2
+bx+c=0(a≠0)的根的判别式△=b
2
-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
找相似题
(2013·珠海)已知一元二次方程:①x
2
+2x+3=0,②x
2
-2x-3=0.下列说法正确的是( )
f(x)=
x
x+1
的最大值为
1
2
1
2
.
已知△ABC的三边长分别是a,b,c,其中a=3,c=5,且关于x的一元二次方程x
2
-4x+b=0有两个相等的实数根,判断△ABC的形状.
已知关于x的一元二次方程
(
1
2
k-1)
x
2
-(k+1)x+
1
2
k+1=0
有实数根,求实数k的取值范围.
已知y=
ax-1
3
a
x
2
+4ax+3
的定义域为R,求实数a的取值范围.