数学
(1)如图1,已知∠EOF=120°,OM平分∠EOF,A是OM上一点,∠BAC=60°,且与OF、OE分别相交于点B、C,则有AB=AC;
(2)如图2,在如上的(1)中,当∠BAC绕点A逆时针旋转使得点B落在OF的反向延长线上时,(1)中的结论是否还成立?若成立,给出证明;若不成立,说明理由;
(3)如图3,已知∠AOC=∠BOC=∠BAC=60°,求证:①△ABC是等边三角形; ②OC=OA+OB.
已知:如下图,△ABC是等边三角形,D为AC上任一点,∠ABD=∠ACE,BD=CE,求证:△ADE是等边三角形.
若a,b,c是△ABC的三边,且a
2
+b
2
+c
2
=ab+ac+bc,试探索△ABC的形状,并说明理由.
Rt△ABC≌Rt△DEF,∠ABC=∠DEF=90°,将△ABC和△DEF重叠放置如图①.
(1)保持△ABC不动,将△DEF绕点E顺时针旋转60°,使DF经过点C,如图②.求证:△BCF是等边三角形;
(2)保持△ABC不动,将△DEF绕点E顺时针旋转90°,如图③,判断AC与DF的位置关系,并说明理由.
如图所示,已知点D是等边三角形ABC的边BC延长线上的一点,∠EBC=∠DAC,CE∥AB.求证:△CDE是等边三角形.
如图,在△ABC中,∠B=60°,延长BC到D,延长BA到E,使AE=BD,连接CE、DE,使EC=DE,求证:△ABC是等边三角形.
(2009·新洲区模拟)如图,将Rt△ABC(∠ACB=90°,∠ABC=30°)沿直线AD折叠,使点B落在E处,E在AC的延长线上,则∠AEB的度数为( )
如图,△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为( )
设M,N,P分别是等边三角形ABC各边上的点,AM=BN=CP,则△MNP是( )
如图,已知点P是线段AB上一动点(不与端点A,B重合),△APC和△PBD都是等边三角形,连接AD、BC交于点I,并与PC、PD交于点E、F,则有下列结论:①AD=BC;②等边△PEF;③∠CID=120°;④∠ECF=∠EDF,其中正确的有( )
第一页
上一页
14
15
16
17
18
下一页
最后一页
1107958
1107960
1107963
1107965
1107967
1107970
1107972
1107976
1107978
1107980