答案
证明:∵∠ABE+∠CBE=60°,∠CAD+∠ADC=60°,∠EBC=∠DAC,
∴∠ABE=∠ADC.
又CE∥AB,∴∠BEC=∠ABE.
∴∠BEC=∠ADC.
又BC=AC,∠EBC=∠DAC,
∴△BCE≌△ACD.
∴CE=CD,∠BCE=∠ACD,即∠ECD=∠ACB=60°.
∴△CDE是等边三角形.
证明:∵∠ABE+∠CBE=60°,∠CAD+∠ADC=60°,∠EBC=∠DAC,
∴∠ABE=∠ADC.
又CE∥AB,∴∠BEC=∠ABE.
∴∠BEC=∠ADC.
又BC=AC,∠EBC=∠DAC,
∴△BCE≌△ACD.
∴CE=CD,∠BCE=∠ACD,即∠ECD=∠ACB=60°.
∴△CDE是等边三角形.