试题
题目:
Rt△ABC≌Rt△DEF,∠ABC=∠DEF=90°,将△ABC和△DEF重叠放置如图①.
(1)保持△ABC不动,将△DEF绕点E顺时针旋转60°,使DF经过点C,如图②.求证:△BCF是等边三角形;
(2)保持△ABC不动,将△DEF绕点E顺时针旋转90°,如图③,判断AC与DF的位置关系,并说明理由.
答案
解:(1)∵Rt△ABC≌Rt△DEF,
∴AB=DE,AC=DF,BC=EF,∠A=∠D.
∵将△DEF绕点E顺时针旋转60°,
∴∠FBC=60°.
∵BC=BF,
∴△BCF是等边三角形;
(2)AC⊥DF.
理由:延长AC交DF于G,
∵∠ABC=90°,
∴∠A+∠ACB=90°.
∵∠ACB=∠DCG,
∴∠D+∠DCG=90°,
∴∠DGC=90°.
∴AG⊥DF,即AC⊥DF.
解:(1)∵Rt△ABC≌Rt△DEF,
∴AB=DE,AC=DF,BC=EF,∠A=∠D.
∵将△DEF绕点E顺时针旋转60°,
∴∠FBC=60°.
∵BC=BF,
∴△BCF是等边三角形;
(2)AC⊥DF.
理由:延长AC交DF于G,
∵∠ABC=90°,
∴∠A+∠ACB=90°.
∵∠ACB=∠DCG,
∴∠D+∠DCG=90°,
∴∠DGC=90°.
∴AG⊥DF,即AC⊥DF.
考点梳理
考点
分析
点评
全等三角形的判定与性质;等边三角形的判定.
(1)根据旋转的性质可以得出∠FBC=60°,根据全等三角形的性质可以得出BF=BC,从而得出结论;
(2)延长AC交DF于G,根据全等三角形的性质就可以得出∠D=∠A,可以得出∠D+∠DCG=90°,就可以得出AC⊥DF.
本题考查了旋转的性质的运用,全等三角形的性质的运用,等边三角形的判定方法的运用,垂直的判定方法的运用,解答时灵活运用全等三角形的性质是关键.
找相似题
下面给出的几种三角形,其中不一定是等边三角形的是( )
如图,AC⊥BC,AD=BD,为了使图中的△BCD是等边三角形,再增加一个条件可以是( )
P为∠AOB内一点,∠AOB=30°,P关于OA、OB的对称点分别为M、N,则△MON定是( )
下列条件中,不能得到等边三角形的是( )
在等边△ABC的边BA、CB、AC的延长线上,分别截取AA′=BB′=CC′,那么△A′B′C′是( )