数学
已知:△ABC、△DEF均为等边三角形,连接AF.
(1)如图1,点C与点E重合时,求证:∠AED=∠AFD;
(2)如图2,当BE=EC时,探究FA与DF的数量关系.
如图,已知点M、N分别在等边△ABC(等边三角形满足三边都相等,三内角都等于60°)的边BC、CA上,AM、BN交于点Q,且∠AQN=60°.
求证:AM=BN.
如图,等边△ABC中,D为BC边中点,CP是BC的延长线.按下列要求作图并回答问题:(要求:尺规作图,不写作法,保留作图痕迹)
(1)作∠ACP的平分线CF;
(2)作∠ADE=60°,且DE交CF于点E;
(3)在(1),(2)的条件下,可判断AD与DE的数量关系是
AD=DE
AD=DE
;
请说明理由.
如图,△ABC与△ABD都是等边三角形,点E,F分别在BC,AC上,BE=CF,AE与BF交于点G.
(1)求∠AGB的度数;
(2)连接DG,求证:DG=AG+BG.
如图所示,已知:AB=BC=AC,CD=DE=EC,
(1)求证:∠ACD=∠BCE;
(2)求证:△ADC≌BEC;
(3)求证:AD=BE.
已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作等边△ADE(顶点A、D、E按逆时针方向排列),连接CE.
(1)如图1,当点D在边BC上时,求证:①BD=CE,②AC=CE+CD;
(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CE+CD是否成立?若不成立,请写出AC、CE、CD之间存在的数量关系,并说明理由;
(3)如图3,当点D在边BC的反向延长线上且其他条件不变时,补全图形,并直接写出AC、CE、CD之间存在的数量关系.
下面给出的几种三角形,其中不一定是等边三角形的是( )
如图,AC⊥BC,AD=BD,为了使图中的△BCD是等边三角形,再增加一个条件可以是( )
P为∠AOB内一点,∠AOB=30°,P关于OA、OB的对称点分别为M、N,则△MON定是( )
下列条件中,不能得到等边三角形的是( )
第一页
上一页
11
12
13
14
15
下一页
最后一页
1107800
1107802
1107804
1107809
1107812
1107814
1107905
1107907
1107909
1107913