试题
题目:
如图,AC⊥BC,AD=BD,为了使图中的△BCD是等边三角形,再增加一个条件可以是( )
A.CD⊥AB
B.CD=BD
C.BC=
1
2
AB
D.BC=
1
2
AC
答案
C
解:∵AC⊥BC,AD=BD,
∴CD=AD=BD=
1
2
AB,
∴为了使图中的△BCD是等边三角形,需CD=BD=BC,
∴再增加一个条件可以是:BC=
1
2
AB.
故选C.
考点梳理
考点
分析
点评
等边三角形的判定.
由AC⊥BC,AD=BD,根据直角三角形中,斜边的中线等于斜边的一半,即可得CD=AD=BD=
1
2
AB,继而可求得答案.
此题考查了直角三角形的性质与等边三角形的判定.此题难度不大,注意掌握数形结合思想的应用.
找相似题
下面给出的几种三角形,其中不一定是等边三角形的是( )
P为∠AOB内一点,∠AOB=30°,P关于OA、OB的对称点分别为M、N,则△MON定是( )
下列条件中,不能得到等边三角形的是( )
在等边△ABC的边BA、CB、AC的延长线上,分别截取AA′=BB′=CC′,那么△A′B′C′是( )
若一个三角形的最小内角为60°,则下列判断中正确的有( )
(1)这个三角形是锐角三角形;(2)这个三角形是等腰三角形;(3)这个三角形是等边三角形;(4)形状不能确定;(5)不存在这样的三角形.