数学
(2011·惠山区模拟)提出问题:如图,有一块分布均匀的等腰三角形蛋糕(AB=BC,且BC≠AC),在蛋糕的边缘均匀分布着巧克力,小明和小华决定只切一刀将这块蛋糕平分(要求分得的蛋糕和巧克力质量都一样).
背景介绍:这条分割直线即平分了三角形的面积,又平分了三角形的周长,我们称这条线为三角形的“等分积周线”.尝试解决:
(1)小明很快就想到了一条分割直线,而且用尺规作图作出.请你帮小明在图1中画出这条“等分积周线”,从而平分蛋糕.
(2)小华觉得小明的方法很好,所以自己模仿着在图1中过点C画了一条直线CD交AB于点D.你觉得小华会成功吗如能成功,说出确定的方法;如不能成功,请说明理由.
(3)通过上面的实践,你一定有了更深刻的认识.请你解决下面的问题:若AB=BC=5 cm,AC=6 cm,请你找出△ABC的所有“等分积周线”,并简要的说明确定的方法.
以给定的图形“○○、△△、=”(两个圆、两个三角形、两条平行线)为构件,构思出独特且有意义的图形.举例:如图,右图中是符合要求的一个图形,你能构思出其它的图形吗?请在右框中画出与之不同的一个图形,并写出一句贴切、诙谐的解说词.
某校八年级学生去工厂参加社会实践活动.工人师傅出了一道题想考考同学们:有一张长为3,宽为1的长方形三夹板,现要在它上面裁出两个小长方形,要求小长方形的一边与大长方形的边平行,且每个小长方形的长宽之比仍为3:1.
(1)请你在下面的图中画出符合条件的三种不同类型的裁剪示意图,并将你画出的两个小长方形的各边长在图上表示出来.
(2)若把这些小长方形裁下来,这时裁得的两个小长方形的周长之和有最大值吗?若有,求出这个最大值;若没有,请说明理由.
如图1所示,阴影部分是陆地,折线ABCDE是河岸,今要将河岸拉直,需在线段DE上找一点M,将河岸ABCDM变成线段AM,并且河面面积保持不变.
请你在图2中画出线段AM(保留作图痕迹),并说明理由.
(2012·响水县一模)在△ABC中,AB、BC、AC三边的长分别为
5
、
10
、
13
,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.
(1)△ABC的面积为:
7
2
7
2
;
(2)若△DEF三边的长分别为
5
、
2
2
、
17
,请在图1的正方形网格中画出相应的△DEF,并利用构图法求出它的面积;
(3)如图2,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13,10,17,且△PQR、△BCR、△DEQ、△AFP的面积相等,求六边形花坛ABCDEF的面积.
(2012·开平区二模)已知:正方形ABCD的边长为a,P是边CD上一个动点不与C、D重合,CP=b,以CP为一边在正方形ABCD外作正方形PCEF,连接BF、DF.
观察计算:
(1)如图1,当a=4,b=1时,四边形ABFD的面积为
16
16
;
(2)如图2,当a=4,b=2时,四边形ABFD的面积为
16
16
;
(3)如图3,当a=4,b=3时,四边形ABFD的面积为
16
16
;
探索发现:
(4)根据上述计算的结果,你认为四边形ABFD的面积与正方形ABCD的面积之间有怎样的关系?证明你的结论;
综合应用:
(5)农民赵大伯有一块正方形的土地(如图5),由于修路被占去一块三角形的地方△BCE,但决定在DE的右侧补给赵大伯一块土地,补偿后的土地为四边形ABMD,且四边形ABMD的面积与原来正方形土地的面积相等,M、E、B三点要在一条直线上,请你画图说明,如何确定M点的位置.
(2011·滨江区模拟)如图是一块四边形的薄钢板,∠A=60°,∠C=120°,AB=AD.
(1)能否先沿一条对角线将钢板切割成两块,再焊接成一块与原钢板面积相同的三角形钢板?若能,请说明切割、焊接的方法,用虚线画出示意图,并说明焊接的钢板是什么三角形;若不能,请说明理由;
(2)若BC=1m,CD=3m,求这块钢板的面积.
(2010·李沧区二模)如图:△ABC是一块直角三角形余料,∠C=90度,工人师傅把它加工成一个正方形零件,使C为正方形的一个顶点,其余三个顶点分别在AB、BC、AC边上,请你协助工人师傅用尺规画出裁割线.(不写画法,保留作图痕迹)
(2008·龙湖区模拟)园林工人在对一块半圆形场地进行绿化时遇到难题,需将如图所示的半圆面分成
面积相等的三个扇形,以种上不同花草.
(1)请你帮该工人在图上作出圆弧的三等分点C、D,画出等分线(用直尺和圆规作图,不写作法,保留作图痕迹).
(2)已知直径AB长24m,请你帮该工人算出其中一份的面积.
如图1,在梯形ABCD中AD∥BC,对角线AC,BD交于点P,则s
△PAB
=S
△PDC
,请你用梯形对角线的这一特殊性质,解决下面问题.
在图2中,点E是△ABC中AB边上的任意一点,且AE≠BE,过点E画一条直线,把△ABC分成面积相等的两部分,保留作图痕迹,并简要说明你的方法.
第一页
上一页
29
30
31
32
33
下一页
最后一页
184283
184284
184285
184287
184288
184289
184291
184293
184294
184295