数学
如图所示,在房子的屋檐E处安有一台监视器,房子前有一面落地的广告牌,那么监视器的盲区在
△ABD所在的区域
△ABD所在的区域
.
如图,身高l.5米的小强站在离一个高大的建筑物20米处,他的前方5米有一堵墙,若墙高2米,则站立的小强观察这个建筑物时,盲区的范围
3.5
3.5
米(建筑物上的高度).
当人用眼睛看其他事物时,人眼睛的位置称为
视点
视点
,由
视点
视点
发出的射线称为
视线
视线
.人的眼睛看不到的地方称为
盲区
盲区
.
轮船及汽车的驾驶室设在前面是为了让驾驶员的盲区足够
小
小
.
(2007·黔南州)如示意图,小华家(点A处)和公路(l)之间竖立着一块30米长且平行于公路的巨型广告牌(DE),广告牌挡住了小华的视线,请在图中画出视点A的盲区,并将盲区的那段公路记BC,一辆以60公里/小时匀速行驶的汽车经过公路BC段的时间为6秒,已知广告牌和公路的距离为35米,求小华家到公路的距离.
(2005·河北)图1至图7中的网格图均是20×20的等距网格图(每个小方格的边长均为1个单位长).侦察兵王凯在P点观察区域MNCD内的活动情况.当5个单位长的列车(图中的
)以每秒1个单位长的速度在铁路线MN上通过时,列车将阻挡王凯的部分视线,在区域MNCD内形成盲区(不考虑列车的宽度和车厢间的缝隙).设列车车头运行到M点的时刻为0,列车从M点向N点方向运行的时间为t(秒).
(1)在区域MNCD内,请你针对图1,图2,图3,图4中列车位于不同位置的情形分别画出相应的盲区,并在盲区内涂上阴影.
(2)只考虑在区域ABCD内开成的盲区.设在这个区域内的盲区面积是y(平方单位).
①如图5,当5≤t≤10时,请你求出用t表示y的函数关系式;
②如图6,当10≤t≤15时,请你求出用t表示y的函数关系式;
③如图7,当15≤t≤20时,请你求出用t表示y的函数关系式;
④根据①~③中得到的结论,请你简单概括y随t的变化而变化的情况.
(3)根据上述研究过程,请你按不同的时段,就列车行驶过程中在区域MNCD内所形成盲区的面积大小的变化情况提出一个综合的猜想(问题(3)是额外加分,加分幅度为1~4分).
(2005·贵阳)如图,现有m、n两堵墙,两个同学分别在A处和B处,请问小明在哪个区域内活动才不会被这两个同学发现(画图用阴影表示).
(2009·郑州模拟)如图假设一座大楼高30米,观众坐在距大楼500米处,魔术师只需做一个屏障,屏障上的图画和没有大楼以后的景物一样,将屏障立在大楼前100米处,这样观众看上去好像大楼突然消失了.若要完全挡住大楼,请你找到一个方法计算出屏障至少要多高?(人身高忽略不计)
(2009·裕华区二模)如图,小明家(点A处)和公路(L)之间竖立着一块35米长且平行于公路的巨型广告牌(DE),广告牌挡住了小明的视线
(1)请在图中画出视点A的盲区,并将盲区的那段公路记为BC;
(2)若一辆以60公里/小时匀速行驶的汽车经过公路BC段的时间为3秒,已知广告牌和公路的距离为40米,求小明家到公路的距离(精确到1米)
小明开着汽车在平坦的公路上行驶,前放出现两座建筑物A、B(如图),在(1)处小颖能看到B建筑物的一部分,(如图),此时,小明的视角为30°,已知A建筑物高25米.
(1)请问汽车行驶到什么位置时,小明刚好看不到建筑物B?请在图中标出这点.
(2)若小明刚好看不到B建筑物时,他的视线与公路的夹角为45°,请问他向前行驶了多少米?( 精确到0.1)
第一页
上一页
16
17
18
19
20
下一页
最后一页
182358
182359
182360
182361
182362
182363
182364
182365
182366
182367