试题
题目:
小明开着汽车在平坦的公路上行驶,前放出现两座建筑物A、B(如图),在(1)处小颖能看到B建筑物的一部分,(如图),此时,小明的视角为30°,已知A建筑物高25米.
(1)请问汽车行驶到什么位置时,小明刚好看不到建筑物B?请在图中标出这点.
(2)若小明刚好看不到B建筑物时,他的视线与公路的夹角为45°,请问他向前行驶了多少米?( 精确到0.1)
答案
解:(1)如图所示:
汽车行驶到E点位置时,小明刚好看不到建筑物B;
(2)∵小明的视角为30°,A建筑物高25米,
∴AC=25,
tan30°=
AC
AM
=
3
3
,
∴AM=25
3
,
∵∠AEC=45°,
∴AE=AC=25m,
∴ME=AM-AE=43.3-25=18.3m.
则他向前行驶了18.3米.
解:(1)如图所示:
汽车行驶到E点位置时,小明刚好看不到建筑物B;
(2)∵小明的视角为30°,A建筑物高25米,
∴AC=25,
tan30°=
AC
AM
=
3
3
,
∴AM=25
3
,
∵∠AEC=45°,
∴AE=AC=25m,
∴ME=AM-AE=43.3-25=18.3m.
则他向前行驶了18.3米.
考点梳理
考点
分析
点评
视点、视角和盲区.
(1)连接FC并延长到BA上一点E,即为所求答案;
(2)利用解Rt△AEC求AE,解Rt△ACM,求AM,利用ME=AM-AE求出他行驶的距离.
本题考查了解直角三角形的基本方法,先分别在两个直角三角形中求相关的线段,再求差是解题关键.
找相似题
(2010·淄博)图中的八边形是一个正八棱柱的俯视图,如果要想恰好看到这个正八棱柱的三个侧面,在图中标注的4个区域中,应该选择站在( )
(2009·宁德)图(1)表示一个正五棱柱形状的高大建筑物,图(2)是它的俯视图.小健站在地面观察该建筑物,当他在图(2)中的阴影部分所表示的区域活动时,能同时看到建筑物的三个侧面,图中∠MPN的度数为( )
(2006·十堰)如图所示,课堂上小亮站在座位上回答数学老师提出的问题,那么数学老师观察小亮身后,盲区是( )
(2009·塘沽区一模)如图左右并排的两颗大树的高度分别是AB=8米,CD=12米,两树的水平距离BD=5米,一观测者的眼睛高EF=1.6米,且E、B、D在一条直线上,当观测者的视线FAC恰好经过两棵树的顶端时,四边形ABDC的区域是观测者的盲区,则此时观测者与树AB的距离EB等于( )
(2007·江西模拟)当你在笔直的公路上乘车由A至E的过程中(如图所示),发现路边有两栋建筑物,那么不能看到较高建筑物PD的路段是( )