数学
(2008·扬州)已知:矩形ABCD中,AB=1,点M在对角线AC上,直线l过点M且与AC垂直,与AD相交于点E.
(1)如果直线l与边BC相交于点H(如图1)AM=
1
3
AC且AD=a,求的AE长(用含a的代数式表示);
(2)在(1)中,直线l把矩形分成两部分的面积比为2:5,求a的值;
(3)若AM=
1
4
AC,且直线l经过点B(如图2),求AD的长;
(4)如果直线l分别与边AD,AB相交于点E,F,AM=
1
4
AC,设AD的长为x,△AEF的面积为y,求y与x的函数关系式,并指出x的取值范围(求x的取值范围可不写过程).
(2008·扬州)如图,在△ABD和△ADE中,AB=AD,AC=AE,∠BAD=∠CAE,连接BC、DE相交于点F,BC与AD相交于点G
(1)试判断线段BC、DE的数量关系,并说明理由;
(2)如果∠ABC=∠CBD,那么线段FD是线段FG和FB的比例中项吗?为什么?
(2008·徐州)如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°
操作:将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF绕点E旋转,并使边DE与边AB交于点P,边EF与边BC于点Q.
探究一:在旋转过程中,
(1)如图2,当
CE
EA
=1
时,EP与EQ满足怎样的数量关系?并给出证明;
(2)如图3,当
CE
EA
=2
时,EP与EQ满足怎样的数量关系?并说明理由;
(3)根据你对(1)、(2)的探究结果,试写出当
CE
EA
=m
时,EP与EQ满足的数量关系式为
1:m
1:m
,其中m的取值范围是
0<m≤2+
6
0<m≤2+
6
.(直接写出结论,不必证明)
探究二:若
CE
EA
=2
且AC=30cm,连接PQ,设△EPQ的面积为S(cm
2
),在旋转过程中:
(1)S是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由.
(2)随着S取不同的值,对应△EPQ的个数有哪些变化,求出相应S的值或取值范围.
(2008·厦门)已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与C重合,再展开,折痕
EF交AD边于E,交BC边于F,分别连接AF和CE.
(1)求证:四边形AFCE是菱形;
(2)若AE=10cm,△ABF的面积为24cm
2
,求△ABF的周长;
(3)在线段AC上是否存在一点P,使得2AE
2
=AC·AP?若存在,请说明点P的位置,并予以证明;若不存在,请说明理由.
(2008·邵阳)如图,将含30°角的直角三角板ABC(∠B=30°)绕其直角顶点A逆时针旋转α解(0°<α<90°),得到Rt△ADE,AD与BC相交于点M,过点M作MN∥DE交AE于点N,连接NC.设BC=4,BM=x,△MNC的面积为S
△MN
C
,△ABC的面积为S
△ABC
.
(1)求证:△MNC是直角三角形;
(2)试求用x表示S
△MNC
的函数关系式,并写出x的取值范围;
(3)以点N为圆心,NC为半径作⊙N,
①当直线AD与⊙N相切时,试探求S
△MNC
与S
△ABC
之间的关系;
②当S
△MNC
=
1
4
S
△ABC
时,试判断直线AD与⊙N的位置关系,并说明理由.
(2008·清远)如图,A,B,C,D是⊙O上的四个点,点A是
BC
的中点,AD交BC于点E,AE=4,AB=6,求DE的长.
(2008·黔南州)如图,点D、E分别是等边三角形ABC的BC、AC边上的点,且BD=CE,AD与BE相交于点F.
(1)试说明△ABD≌△BCE;
(2)BD
2
=AD·DF吗?为什么?
(2008·宁夏)如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连接DP交AC于点Q.
(1)试证明:无论点P运动到AB上何处时,都有△ADQ≌△ABQ;
(2)当点P在AB上运动到什么位置时,△ADQ的面积是正方形ABCD面积的
1
6
;
(3)若点P从点A运动到点B,再继续在BC上运动到点C,在整个运动过程中,当点P运动到什么位置时,△ADQ恰为等腰三角形.
(2008·宁波)如图,把一张标准纸一次又一次对开,得到“2开”纸,“4开”纸,“8开”纸,“16开”纸….已知标准纸的短边长为a.
(1)如图2,把这张标准纸对开得到的“16开”张纸按如下步骤折叠:
第一步:将矩形的短边AB与长边AD对齐折叠,点B落在AD上的点B'处,铺平后得折痕AE;
第二步:将长边AD与折痕AE对齐折叠,点D正好与点E重合,铺平后得折痕AF.
则AD:AB的值是
2
2
,AD,AB的长分别是
2
4
a
2
4
a
,
1
4
a
1
4
a
;
(2)“2开”纸,“4开”纸,“8开”纸的长与宽之比是否都相等?若相等,直接写出这个比值;若不相等,请分别计算它们的比值;
(3)如图3,由8个大小相等的小正方形构成“L”型图案,它的四个顶点E,F,G,H分别在“16开”纸的边AB,BC,CD,DA上,求DG的长;
(4)已知梯形MNPQ中,MN∥PQ,∠M=90°,MN=MQ=2PQ,且四个顶点M,N,P,Q都在“4开”纸的边上,请直接写出2个符合条件且大小不同的直角梯形的面积.
(2008·莱芜)在Rt△ABC中,∠ACB=90°,中线AE与中线CD交于点O,AB=6.
(1)求证:AO:OE=2:1;
(2)求OC的长.
第一页
上一页
253
254
255
256
257
下一页
最后一页
173272
173273
173274
173275
173276
173277
173278
173279
173280
173281