数学
(2013·百色)如图,在等腰梯形ABCD中,DC∥AB,E是DC延长线上的点,连接AE,交BC于点F.
(1)求证:△ABF∽△ECF;
(2)如果AD=5cm,AB=8cm,CF=2cm,求CE的长.
(2013·巴中)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.
(1)求证:△ADF∽△DEC;
(2)若AB=8,AD=6
3
,AF=4
3
,求AE的长.
(2012·湛江) 如图,已知点E在直角△ABC的斜边AB上,以AE为直径的⊙O与直角边BC相切于点D.
(1)求证:AD平分∠BAC;
(2)若BE=2,BD=4,求⊙O的半径.
(2012·义乌市)在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A
1
BC
1
.
(1)如图1,当点C
1
在线段CA的延长线上时,求∠CC
1
A
1
的度数;
(2)如图2,连接AA
1
,CC
1
.若△ABA
1
的面积为4,求△CBC
1
的面积;
(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P
1
,求线段EP
1
长度的最大值与最小值.
(2012·宜昌)如图,△ABC和△ABD都是⊙O的内接三角形,圆心O在边AB上,边AD分别与BC,OC交于E,F两点,点C为
AD
的中点.
(1)求证:OF∥BD;
(2)若
FE
ED
=
1
2
,且⊙O的半径R=6cm.
①求证:点F为线段OC的中点;
②求图中阴影部分(弓形)的面积.
(2012·梧州)如图,AB是⊙O的直径,CO⊥AB于点O,CD是⊙O的切线,切点为D.连接BD,交OC于点E.
(1)求证:∠CDE=∠CED;
(2)若AB=13,BD=12,求DE的长.
(2012·天津)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.
(Ⅰ)如图①,当∠BOP=30°时,求点P的坐标;
(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;
(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).
(2012·黔南州)如图1,在边长为5的正方形ABCD中,点E、F分别是BC、DC边上的点,且AE⊥EF,BE=2.
(1)求EC:CF的值;
(2)延长EF交正方形外角平分线CP于点P(如图2),试判断AE与EP的大小关系,并说明理由;
(3)在图2的AB边上是否存在一点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.
(2012·攀枝花)如图所示,在形状和大小不确定的△ABC中,BC=6,E、F分别是AB、AC的中点,P在EF或EF的延长线上,BP交CE于D,Q在CE上且BQ平分∠CBP,设BP=y,PE=x.
(1)当x=
1
3
EF时,求S
△DPE
:S
△DBC
的值;
(2)当CQ=
1
2
CE时,求y与x之间的函数关系式;
(3)①当CQ=
1
3
CE时,求y与x之间的函数关系式;
②当CQ=
1
n
CE(n为不小于2的常数)时,直接写出y与x之间的函数关系式.
(2012·南通)如图△ABC中,AB=AC=10厘米,BC=12厘米,D是BC的中点,点P从B出发,以a厘米/秒(a>0)的速度沿BA匀速向
点A运动,点Q同时以1厘米/秒的速度从D出发,沿DB匀速向点B运动,其中一个动点到达端点时,另一个动点也随之停止运动,设它们运动的时间为t秒.
(1)若a=2,△BPQ∽△BDA,求t的值;
(2)设点M在AC上,四边形PQCM为平行四边形.
①若a=
5
2
,求PQ的长;
②是否存在实数a,使得点P在∠ACB的平分线上?若存在,请求出a的值;若不存在,请说明理由.
第一页
上一页
234
235
236
237
238
下一页
最后一页
173076
173077
173079
173080
173081
173082
173083
173084
173085
173086