数学
(2012·柳州)如图,用两张等宽的纸条交叉重叠地放在一起,重合的四边形ABCD是一个特殊的四边形.
(1)这个特殊的四边形应该叫做
菱形
菱形
;
(2)请证明你的结论.
(2007·安顺)已知:如图所示,在△ABC中,AB=AC,D,E,F分别是AB,BC,AC边上的中点.
(1)求证:四边形ADEF是菱形;
(2)若AB=24,求菱形ADEF的周长.
(2012·西城区模拟)我们在几何的学习中能发现,很多图形的性质定理与判定定理之间有着一定的联系.例如:菱形的性质定理“菱形的对角线互相垂直”和菱形的判定定理“对角线互相垂直的平行四边形是菱形”就是这样.但是课本中对菱形的另外一个性质“菱形的对角线平分一组对角”却没有给出类似的判定定理,请你利用如图所示图形研究一下这个问题.
要求:如果有类似的判定定理,请写出已知、求证并证明.如果没有,请举出反例.
(2011·房山区二模)在△ABC中,AB=AC,∠BAC=120°,过点C作CD∥AB,且CD=2AB,连接BD,BD=2.求△ABC的面积.
如图,将直角三角形纸片ABC沿边BC所在直线向右平移,使B点移至斜边BC的中点E处
,连接AD、AE、CD.
(1)求证:四边形AECD是菱形.
(2)若直角三角形纸片ABC的斜边BC的长为100cm,且AC=60cm.求ED的长和四边形AECD的面积.
已知,如图①,在Rt△ABC中,∠C=90°,∠A=60°,AB=12cm,点P从点A沿AB以每秒2cm的速度向点B运动,点Q从点C以每秒1cm的速度向点A运动,设点P、Q分别从点A、C同时出发,运动时间为t(秒)(0<t<6),回答下列问题:
(1)直接写出线段AP、AQ的长(含t的代数式表示):AP=
2t
2t
,AQ=
6-t
6-t
;
(2)设△APQ 的面积为S,写出S与t的函数关系式;
(3)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时间t,使四边形PQP′C为菱形?若存在,求出此时t的值;若不存在,说明理由.
如图,Rt△ABC中,∠ACB=Rt∠,AC=4cm,BC=3cm,将Rt△ABC沿着BA方向平移4cm到△DEF的位置,连接CF.
(1)判断四边形ACFD的形状并加以证明.
(2)求四边形ACFD的面积.
如图,·ABCD中,AB=9,对角线AC与BD相交于点O,AC=12,BD=
6
5
,
(1)求证:·ABCD是菱形;
(2)求这个平行四边形的面积.
动手操作:在一张长12cm、宽5cm的矩形纸片内,要折出一个菱形.小颖同学按照取两组对边中点的方法折出菱形EFGH(见方案一),小明同学沿矩形的对角线AC折出∠CAE=∠CAD,∠ACF=∠ACB的方法得到菱形AECF(见方案二).
(1)你能说出小颖、小明所折出的菱形的理由吗?
(2)请你通过计算,比较小颖和小明同学的折法中,哪种菱形面积较大?
如图,在四边形ABCD中,AB=DC,E、F分别是AD、BC的中点,G、H分别是BD、AC的中点,猜一猜EF与GH的位置关系,并证明你的结论.
第一页
上一页
65
66
67
68
69
下一页
最后一页
115973
115975
115977
115980
115982
115984
115986
115988
115990
115992