试题
题目:
(2012·西城区模拟)我们在几何的学习中能发现,很多图形的性质定理与判定定理之间有着一定的联系.例如:菱形的性质定理“菱形的对角线互相垂直”和菱形的判定定理“对角线互相垂直的平行四边形是菱形”就是这样.但是课本中对菱形的另外一个性质“菱形的对角线平分一组对角”却没有给出类似的判定定理,请你利用如图所示图形研究一下这个问题.
要求:如果有类似的判定定理,请写出已知、求证并证明.如果没有,请举出反例.
答案
答:有判定定理.
已知:在平行四边形ABCD中,对角线AC平分∠DAB和∠DCB
求证:四边形ABCD是菱形,
证明:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠DAC=∠ACB,
∵∠ACB=∠ACD,
∴∠DAC=∠ACD,
∴AD=DC,
∴四边形ABCD是菱形.
答:有判定定理.
已知:在平行四边形ABCD中,对角线AC平分∠DAB和∠DCB
求证:四边形ABCD是菱形,
证明:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠DAC=∠ACB,
∵∠ACB=∠ACD,
∴∠DAC=∠ACD,
∴AD=DC,
∴四边形ABCD是菱形.
考点梳理
考点
分析
点评
专题
菱形的判定与性质.
有判定定理,可把命题“菱形的对角线平分一组对角”的题设作为已知,把结论作为求证的结果,再利用已有的证明四边形为菱形的方法证明即可.
本题考查平行四边形的性质和菱形的判定方法,解题的关键是熟记各种特殊四边形的性质和其判定方法.
探究型.
找相似题
(2011·莱芜)如图,E、F、G、H分别是BD、BC、AC、AD的中点,且AB=CD.下列结论:①EG⊥FH,②四边形EFGH是矩形,③HF平分∠EHG,④EG=
1
2
(BC-AD),⑤四边形EFGH是菱形.其中正确的个数是( )
下列命题中,真命题是( )
如图,△ABC是边长为2的等边三角形,将△ABC沿射线BC向右平移到△DCE,连接AD、BD,下列结论错误的是( )
下列说法中,错误的是( )
分别顺次连接①等腰梯形;②矩形;③菱形;④对角线相等的四边形“各边中点所构成的四边形”中,为菱形的是( )