试题
题目:
如图,在四边形ABCD中,AB=DC,E、F分别是AD、BC的中点,G、H分别是BD、AC的中点,猜一猜EF与GH的位置关系,并证明你的结论.
答案
EF⊥GH.
证明:连接EG,GF,FH,EH,
∵E、F分别是AD、BC的中点,G、H分别是BD、AC的中点
∴EG=
1
2
AB,EH=
1
2
CD,
又∵AB=DC,
∴EG=EH,
∵EG∥AB,HF∥AB,
∴EG∥HF,同理GF∥EH,
∴四边形EGFH是菱形,EF,GH分别为对角线,
∴EF⊥GH.
EF⊥GH.
证明:连接EG,GF,FH,EH,
∵E、F分别是AD、BC的中点,G、H分别是BD、AC的中点
∴EG=
1
2
AB,EH=
1
2
CD,
又∵AB=DC,
∴EG=EH,
∵EG∥AB,HF∥AB,
∴EG∥HF,同理GF∥EH,
∴四边形EGFH是菱形,EF,GH分别为对角线,
∴EF⊥GH.
考点梳理
考点
分析
点评
专题
菱形的判定与性质;三角形中位线定理.
连接EG,GF,FH,EH,利用三角形中位线定理求证EG平行且等于EH,从而判定出四边形EGFH是菱形,再利用菱形的性质即可得出结论.
此题主要考查学生对菱形的判定与性质和三角形中位线定理的理解和掌握,此题的突破点是利用三角形中位线定理求证四边形EGFH是菱形,然后根据菱形的性质即可得出结论.此题稍有难度,属于中档题.
证明题.
找相似题
(2011·莱芜)如图,E、F、G、H分别是BD、BC、AC、AD的中点,且AB=CD.下列结论:①EG⊥FH,②四边形EFGH是矩形,③HF平分∠EHG,④EG=
1
2
(BC-AD),⑤四边形EFGH是菱形.其中正确的个数是( )
下列命题中,真命题是( )
如图,△ABC是边长为2的等边三角形,将△ABC沿射线BC向右平移到△DCE,连接AD、BD,下列结论错误的是( )
下列说法中,错误的是( )
分别顺次连接①等腰梯形;②矩形;③菱形;④对角线相等的四边形“各边中点所构成的四边形”中,为菱形的是( )