试题
题目:
坐标平面内向上的抛物线y=a(x+2)(x-8)与x轴交于A、B两点,与y轴交于C点,若∠ACB=90°,则a的值是
1
4
1
4
.
答案
1
4
解:根据抛物线的解析式可知:A(-2,0),B(8,0);(设A在B点左侧)
∵∠ACB=90°,因此在Rt△ACB中,根据射影定理,可得:
OC
2
=OA·OB=16;
∴OC=4,即C(0,4),(0,-4);
由于抛物线开口向上,且与x轴有两个交点,因此C(0,-4),代入抛物线的解析式中,得:
a(0+2)(0-8)=-4,解得a=
1
4
.
故应填
1
4
.
考点梳理
考点
分析
点评
专题
待定系数法求二次函数解析式;射影定理.
根据题意可知抛物线y=a(x+2)(x-8)与x轴交于A、B两点的坐标分别是(-2,0),(8,0),因为∠ACB=90°,根据射影定理,可得OC
2
=OA·OB=16,即OC=4,因为图象开口向上且与x轴有两个交点,所以C点坐标为(0,-4),代入抛物线的解析式中即可求得a的值.
主要考查几何图形与二次函数结合的综合题型,此题较简单,先根据射影定理求得抛物线与y轴交点坐标,直接代入即可求得a值.
代数几何综合题.
找相似题
(2000·嘉兴)在Rt△ABC中,AD是斜边BC上的高线,若BD=2,BC=6,则AB=( )
(2014·宁波一模)将
BC
沿弦BC折叠,交直径AB于点D,若AD=4,DB=5,则BC的长是( )
如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于点E,且DE∥BC.已知AE=2
2
,AC=3
2
,BC=6,则⊙O的半径是( )
如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,下列结论不正确的是( )
如图,在Rt△ABC,∠BAC=90°,AD⊥BC,AB=10,BD=6,则BC的值为( )