试题
题目:
(2011·徐汇区一模)如图,在△ABC中,AC=BC=2,∠C=90°,点D为腰BC中点,点E在底边AB上,且DE⊥AD,则BE的长为
2
3
2
3
.
答案
2
3
解:过D点作DH⊥AB,垂足为H,
∵在△ABC中,AC=BC=2,∠C=90°,
∴AB=
AC
2
+
BC
2
=2
2
.
∵点D为腰BC中点,
∴AD=
AC
2
+
CD
2
=
5
,
∵DE⊥AD,∠B=45°,
∴DH=HB=
2
2
,
∴AD
2
=AH·AE,
∴AE=
AD
2
AH
=
(
5
)
2
2
2
-
2
2
=
5
2
3
,
EB=AB-AE=2
2
-
5
2
3
=
2
3
.
故答案为:
2
3
.
考点梳理
考点
分析
点评
专题
勾股定理;射影定理.
先根据已知条件,利用勾股定理分别求出AB、AD的长,再根据射影定理求出AE的长,然后用AB减去AE即可得EB.
此题主要考查学生对勾股定理的理解和掌握,解答关键是过D点作DH⊥AB,求出AE的长,这是此题的突破点,此题有点难度,属于中档题.
计算题.
找相似题
(2000·嘉兴)在Rt△ABC中,AD是斜边BC上的高线,若BD=2,BC=6,则AB=( )
(2014·宁波一模)将
BC
沿弦BC折叠,交直径AB于点D,若AD=4,DB=5,则BC的长是( )
如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于点E,且DE∥BC.已知AE=2
2
,AC=3
2
,BC=6,则⊙O的半径是( )
如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,下列结论不正确的是( )
如图,在Rt△ABC,∠BAC=90°,AD⊥BC,AB=10,BD=6,则BC的值为( )