试题

题目:
青果学院如图,抛物线y=ax2+bx+c的对称轴为x=-2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,-2),则点B的坐标为
(-4,-2)
(-4,-2)

答案
(-4,-2)

解:由题意可知抛物线的y=ax2+bx+c的对称轴为x=-2,
∵点A的坐标为(0,-2),且AB与x轴平行,
∴A、B两点为对称点,
∴B点坐标为(-4,-2).
故答案是:(-4,-2).
考点梳理
二次函数图象上点的坐标特征.
已知抛物线的对称轴为x=-2,知道A的坐标为(0,-2),由函数的对称性知B点坐标.
本题主要考查二次函数图象上点的坐标特征.解题时,主要利用了二次函数的对称性.
找相似题