试题

题目:
无论m为何实数,二次函数y=x2-(2-m)x+m的图象总是过定点(  )



答案
C
解:原式可化为y=x2-(2-m)x+m=x2-2x+m(1+x),
二次函数的图象总过该定点,即该定点坐标与m的值无关,
于是1+x=0,解得x=-1,
此时y的值为y=1+2=3,图象总过的定点是(-1,3).
故选C.
考点梳理
二次函数图象上点的坐标特征.
无论m为任何实数,二次函数y=x2-(2-m)x+m的图象总是过定点,即该定点坐标与m的值无关.
本题考查了二次函数图象上点的坐标特征,解答此题的关键是明确二次函数的图象总过该定点,即该定点坐标与m的值无关.
找相似题