试题
题目:
(2005·兰州)如图,在内切的两圆中,设C为小圆的圆心,O为大圆的圆心,P为切点,⊙O的弦PQ和⊙C相交于R,过点R作⊙C的切线与⊙O交于A、B两点,求证:Q是弧AB的中点.
答案
证明:连接OC并延长,则延长线必经过切点P,连接CR;
∵CP=CR,
∴∠P=∠CRP.
∵OP=OQ,
∴∠P=∠Q.
∴∠CRP=∠Q.
∴CR∥OQ.
∵AB与⊙O相切于点R,
∴CR⊥AB.
∴OQ⊥AB.
∴Q是弧AB的中点.
证明:连接OC并延长,则延长线必经过切点P,连接CR;
∵CP=CR,
∴∠P=∠CRP.
∵OP=OQ,
∴∠P=∠Q.
∴∠CRP=∠Q.
∴CR∥OQ.
∵AB与⊙O相切于点R,
∴CR⊥AB.
∴OQ⊥AB.
∴Q是弧AB的中点.
考点梳理
考点
分析
点评
专题
相切两圆的性质;切线的性质.
此题根据两圆相切,切点一定在连心线上,可以作辅助线.连接过切点的半径可以得到直角.要证明弧相等,结合垂径定理的推论,只需证明OQ⊥AB.所以根据同位角相等,证明出OQ∥CR,此题可解.
此题综合运用了两圆相切的性质、切线的性质定理、平行线的判定定理、等边对等角以及垂径定理的推论.
证明题.
找相似题
(2010·绍兴)如图为某机械装置的截面图,相切的两圆⊙O
1
,⊙O
2
均与⊙O的弧AB相切,且O
1
O
2
∥l
1
(l
1
为水平线),⊙O
1
,⊙O
2
的半径均为30mm,弧AB的最低点到l
1
的距离为30mm,公切线l
2
与l
1
间的距离为100mm.则⊙O的半径为( )
(2010·杭州)如图,5个圆的圆心在同一条直线上,且互相相切,若大圆直径是12,4个小圆大小相等,则这5个圆的周长的和为( )
(2006·武汉)(人教版)如图,用半径R=3cm,r=2cm的钢球测量口小内大的内孔的直径D.测得钢球顶点与孔口平面的距离分别为a=4cm,b=2cm,则内孔直径D的大小为( )
(2003·资阳)已知半径分别为m,n的两圆的圆心距为4,公切线的条数是3,则|1-m-n|的值为( )
(2003·山东)工人师傅在一个长为25cm,宽为18cm的矩形铁皮上,剪去一个和三边都相切的圆A后,在剩余部分的废料上再剪出一个最大的圆B,则圆B的直径是( )