答案

证明:(1)如图1,过点P作两圆的公切线MP,交AC于点M.
则∠BPM=∠A,∠MPC=∠C.
∴∠BPC=∠BPM+∠MPC=∠A+∠C=∠CPD,
∴PC平分∠BPD;
(2)如图2,过点P作两圆的公切线PM,

则∠MPB=∠A,∠MPC=∠BCP=∠PDC;
∴∠BPC=∠MPC-∠MPB=∠BCP-∠A=∠CPA,
∴PC平分∠BPD.

证明:(1)如图1,过点P作两圆的公切线MP,交AC于点M.
则∠BPM=∠A,∠MPC=∠C.
∴∠BPC=∠BPM+∠MPC=∠A+∠C=∠CPD,
∴PC平分∠BPD;
(2)如图2,过点P作两圆的公切线PM,

则∠MPB=∠A,∠MPC=∠BCP=∠PDC;
∴∠BPC=∠MPC-∠MPB=∠BCP-∠A=∠CPA,
∴PC平分∠BPD.