试题
题目:
(2006·莱芜)要在一个矩形纸片上画出半径分别是4cm和1cm的两个外切圆,该矩形纸片面积的最小值是
72
72
cm
2
.
答案
72
解:如图,作WG⊥SC,则四边形WDCG是矩形,
∵两圆相切,
∴WS=SC+WD=1+4=5,
∵SG=SC-GC=4-1=3,
∴WG=4,
∴矩形QHBA的长AB=AD+CD+CB=1+4+4=9,宽BH=4+4=8,
∴矩形纸片面积的最小值=8×9=72cm
2
.
考点梳理
考点
分析
点评
专题
矩形的性质;相切两圆的性质.
圆W与圆S外切,并圆W与矩形的两边相切,圆S与矩形三边相切,则有四边形FWDA,SFBC是正方形,作WG⊥SC,则四边形WDCG是矩形;根据矩形的性质和勾股定理,即可求得矩形纸片的长和宽,从而求得矩形纸片面积的最小值是72cm
2
.
本题利用了相切两圆的性质,勾股定理,正方形的判定和性质,矩形的性质求解.
压轴题.
找相似题
(2010·绍兴)如图为某机械装置的截面图,相切的两圆⊙O
1
,⊙O
2
均与⊙O的弧AB相切,且O
1
O
2
∥l
1
(l
1
为水平线),⊙O
1
,⊙O
2
的半径均为30mm,弧AB的最低点到l
1
的距离为30mm,公切线l
2
与l
1
间的距离为100mm.则⊙O的半径为( )
(2010·杭州)如图,5个圆的圆心在同一条直线上,且互相相切,若大圆直径是12,4个小圆大小相等,则这5个圆的周长的和为( )
(2006·武汉)(人教版)如图,用半径R=3cm,r=2cm的钢球测量口小内大的内孔的直径D.测得钢球顶点与孔口平面的距离分别为a=4cm,b=2cm,则内孔直径D的大小为( )
(2003·资阳)已知半径分别为m,n的两圆的圆心距为4,公切线的条数是3,则|1-m-n|的值为( )
(2003·山东)工人师傅在一个长为25cm,宽为18cm的矩形铁皮上,剪去一个和三边都相切的圆A后,在剩余部分的废料上再剪出一个最大的圆B,则圆B的直径是( )