试题
题目:
如图,⊙A和⊙B内切,它们的半径分别为3和1,过A点作⊙B的切线,切点为C,则AC的长为( )
A.2
B.4
C.
3
D.
5
答案
C
解:连接BC,
根据切线的性质,得∠ACB=90°,
根据两圆内切,得AB=3-1=2,
根据勾股定理,得AC=
2
2
-
1
2
=
3
.
故选:C.
考点梳理
考点
分析
点评
专题
相切两圆的性质;切线的性质.
连接过切点的半径,构造直角三角形,根据两圆内切,得到两圆的圆心距,再根据勾股定理进行计算.
此题主要考查了切线的性质、勾股定理以及根据两圆内切,正确计算两圆的圆心距是解题关键.
压轴题.
找相似题
(2010·绍兴)如图为某机械装置的截面图,相切的两圆⊙O
1
,⊙O
2
均与⊙O的弧AB相切,且O
1
O
2
∥l
1
(l
1
为水平线),⊙O
1
,⊙O
2
的半径均为30mm,弧AB的最低点到l
1
的距离为30mm,公切线l
2
与l
1
间的距离为100mm.则⊙O的半径为( )
(2010·杭州)如图,5个圆的圆心在同一条直线上,且互相相切,若大圆直径是12,4个小圆大小相等,则这5个圆的周长的和为( )
(2006·武汉)(人教版)如图,用半径R=3cm,r=2cm的钢球测量口小内大的内孔的直径D.测得钢球顶点与孔口平面的距离分别为a=4cm,b=2cm,则内孔直径D的大小为( )
(2003·资阳)已知半径分别为m,n的两圆的圆心距为4,公切线的条数是3,则|1-m-n|的值为( )
(2003·山东)工人师傅在一个长为25cm,宽为18cm的矩形铁皮上,剪去一个和三边都相切的圆A后,在剩余部分的废料上再剪出一个最大的圆B,则圆B的直径是( )