题目:
(2006·玉溪)如图,半径分别为4cm和3cm的⊙O
1,⊙O
2相交于A,B两点,且O
1O
2=6cm,过点A作⊙O
1的弦AC与⊙O
2相切,作⊙O
2的弦AD与⊙O
1相切.
(1)求证:AB
2=BC·BD;
(2)两圆同时沿连心线都以每秒1cm的速度相向移动,几秒钟时,两圆相切?
(3)在(2)的条件下,三点B,C,D能否在同一直线上?若能,求出移动的时间;若不能,说明理由.
答案
(1)证明:∵CA是⊙O
2的切线,DA是⊙O
1的切线,
∴∠CAB=∠D,∠DAB=∠C,
∴△ABC∽△DBA,
∴AB:BD=BC:AB,
即AB
2=BC·BD;
(2)解:当O
1O
2=4-3=1时,两圆内切,t=(原来的圆心距-现在的圆心距)÷2=(6-1)÷2=2.5秒,
当O
1O
2=7时,两圆外切,t=(原来的圆心距+现在的圆心距)÷2=(6+7)÷2=6.5秒;
当O
1O
2=4-3=1时,两圆内切,t=(原来的圆心距+现在的圆心距)÷2=(6+1)÷2=3.5秒;
(3)解:能,分两种情况:
①当AC是⊙O
1的直径,AD是⊙O
2的直径时,∠ABC=∠ABD=90°,
∵∠CAB=∠D,∠DAB=∠C,
∴∠CAD=∠CAB+∠DAB=180°÷2=90°,
∴由勾股定理得CD=10cm,
∵圆心是直径的中点,
∴O
1O
2=CD÷2=5,t=(6-5)÷2=0.5秒;
②当t=(6+5)÷2=5.5秒时,三点B,C,D在同一直线上.
(1)证明:∵CA是⊙O
2的切线,DA是⊙O
1的切线,
∴∠CAB=∠D,∠DAB=∠C,
∴△ABC∽△DBA,
∴AB:BD=BC:AB,
即AB
2=BC·BD;
(2)解:当O
1O
2=4-3=1时,两圆内切,t=(原来的圆心距-现在的圆心距)÷2=(6-1)÷2=2.5秒,
当O
1O
2=7时,两圆外切,t=(原来的圆心距+现在的圆心距)÷2=(6+7)÷2=6.5秒;
当O
1O
2=4-3=1时,两圆内切,t=(原来的圆心距+现在的圆心距)÷2=(6+1)÷2=3.5秒;
(3)解:能,分两种情况:
①当AC是⊙O
1的直径,AD是⊙O
2的直径时,∠ABC=∠ABD=90°,
∵∠CAB=∠D,∠DAB=∠C,
∴∠CAD=∠CAB+∠DAB=180°÷2=90°,
∴由勾股定理得CD=10cm,
∵圆心是直径的中点,
∴O
1O
2=CD÷2=5,t=(6-5)÷2=0.5秒;
②当t=(6+5)÷2=5.5秒时,三点B,C,D在同一直线上.