试题
题目:
如图,AB、CD与半圆O切于A、D,BC切⊙O于点E,若AB=4,CD=9,求⊙O的半径.
答案
解:过B作BF⊥CD于F;
∵AB、CD与半圆O切于A、D,
∴∠BAD=∠CDA=∠BFD=90°,
∴四边形ADFB为矩形,
∵AB=BE=4,CD=CE=9;
∴BC=BE+CE=13;
∵AB、CD与半圆O相切,
∴四边形ADFB为矩形;
∴CF=CD-FD=9-4=5;
在Rt△BFC中,BF=
BC
2
-
CF
2
=
13
2
-
5
2
=12;
∴半径为6.
解:过B作BF⊥CD于F;
∵AB、CD与半圆O切于A、D,
∴∠BAD=∠CDA=∠BFD=90°,
∴四边形ADFB为矩形,
∵AB=BE=4,CD=CE=9;
∴BC=BE+CE=13;
∵AB、CD与半圆O相切,
∴四边形ADFB为矩形;
∴CF=CD-FD=9-4=5;
在Rt△BFC中,BF=
BC
2
-
CF
2
=
13
2
-
5
2
=12;
∴半径为6.
考点梳理
考点
分析
点评
切线的性质;勾股定理;梯形;切割线定理.
过B作CD的垂线,设垂足为F;由切线长定理知:BA=BE,CE=CD;即BC=AB+CD;在构建的Rt△BFC中,BC=AB+CD,CF=CD-AB,根据勾股定理即可求出BF即圆的直径,进而可求出⊙O的半径.
切线的性质是本题考查的重点;构造直角三角形,用勾股定理求解是解决问题的关键.
找相似题
(2006·泰安)如图,⊙O的割线PAB交⊙O于点A,B,PA=14cm,AB=10cm,PO=20cm,则⊙O的半径是( )
(2006·临沂)如图,在Rt△ABC中,AC=5,BC=12,⊙O分别与边AB,AC相切,切点分别为E,C,则⊙O的半径是( )
(2006·辽宁)如图,点P是⊙O外一点,PAB为⊙O的一条割线,且PA=AB,PO交⊙O于点C,若OC=3,OP=5,则AB长为( )
(2005·荆门)已知PA是⊙O的切线,A为切点,PBC是过点O的割线,PA=10cm,PB=5cm,则⊙O的半径长为( )
(2004·天津)如图⊙O的两条弦AB、CD相交于点E,AC与DB的延长线交于点P,下列结论中成立的是( )