试题
题目:
(2002·兰州)如图,在Rt△ABC中,∠A=90°,以AB为直径的半圆交BC于D,过D作圆的切线交AC于E.
求证:(1)AE=CE;
(2)CD·CB=4DE
2
.
答案
证明:(1)连接AD;
∵AB是圆的直径,
∴∠ADC=∠ADB=90°,
∵∠A=90°,
∴AC是圆的切线;
又∵DE是圆的切线,
∴DE=AE,
∴∠ADE=∠EAD,
∴∠C=∠CDE,
∴CE=DE,
∴AE=CE.
(2)根据切割线定理得CA
2
=CD·CB;
∵由(1)得CA=2DE,
∴CD·CB=4DE
2
.
证明:(1)连接AD;
∵AB是圆的直径,
∴∠ADC=∠ADB=90°,
∵∠A=90°,
∴AC是圆的切线;
又∵DE是圆的切线,
∴DE=AE,
∴∠ADE=∠EAD,
∴∠C=∠CDE,
∴CE=DE,
∴AE=CE.
(2)根据切割线定理得CA
2
=CD·CB;
∵由(1)得CA=2DE,
∴CD·CB=4DE
2
.
考点梳理
考点
分析
点评
专题
切线的性质;圆周角定理;弦切角定理;切割线定理.
(1)连接AD,根据直径所对的圆周角是直角得到直角三角形ACD,根据切线的判定定理证明AC也是圆的切线.根据切线长定理得到AE=DE,根据等边对等角和等角的余角相等证明CE=DE.
(2)根据切割线定理和(1)中的结论.
构造直径所对的圆周角是圆中构造直角三角形的一种常用方法.掌握切线长定理和切割线定理的运用.
证明题;压轴题.
找相似题
(2006·泰安)如图,⊙O的割线PAB交⊙O于点A,B,PA=14cm,AB=10cm,PO=20cm,则⊙O的半径是( )
(2006·临沂)如图,在Rt△ABC中,AC=5,BC=12,⊙O分别与边AB,AC相切,切点分别为E,C,则⊙O的半径是( )
(2006·辽宁)如图,点P是⊙O外一点,PAB为⊙O的一条割线,且PA=AB,PO交⊙O于点C,若OC=3,OP=5,则AB长为( )
(2005·荆门)已知PA是⊙O的切线,A为切点,PBC是过点O的割线,PA=10cm,PB=5cm,则⊙O的半径长为( )
(2004·天津)如图⊙O的两条弦AB、CD相交于点E,AC与DB的延长线交于点P,下列结论中成立的是( )