试题
题目:
(2004·温州)如图,PT是外切两圆的公切线,T为切点,PAB,PCD分别为这两圆的割线.若PA=3,PB=6,PC=2,则PD等于( )
A.12
B.9
C.8
D.4
答案
B
解:∵PT
2
=PA·PB,PT
2
=PC·PD,
∴PA·PB=PC·PD,
∵PA=3,PB=6,PC=2,
∴PD=9.
故选B.
考点梳理
考点
分析
点评
切割线定理.
根据切割线定理得PT
2
=PA·PB,PT
2
=PC·PD,所以PA·PB=PC·PD,从而可求得PD的长.
注意:切割线定理和割线定理都是在同一个圆中运用的.此题借助切线把要求的线段和已知线段联系到了一起.
找相似题
(2006·泰安)如图,⊙O的割线PAB交⊙O于点A,B,PA=14cm,AB=10cm,PO=20cm,则⊙O的半径是( )
(2006·临沂)如图,在Rt△ABC中,AC=5,BC=12,⊙O分别与边AB,AC相切,切点分别为E,C,则⊙O的半径是( )
(2006·辽宁)如图,点P是⊙O外一点,PAB为⊙O的一条割线,且PA=AB,PO交⊙O于点C,若OC=3,OP=5,则AB长为( )
(2005·荆门)已知PA是⊙O的切线,A为切点,PBC是过点O的割线,PA=10cm,PB=5cm,则⊙O的半径长为( )
(2004·天津)如图⊙O的两条弦AB、CD相交于点E,AC与DB的延长线交于点P,下列结论中成立的是( )