试题
题目:
(2002·南昌)如图,PA切⊙O于A,PB切⊙O于B,OP交⊙O于C,下列结论中,错误的是( )
A.∠1=∠2
B.PA=PB
C.AB⊥OP
D.PA
2
=PC·PO
答案
D
解:连接OA、OB,AB,
∵PA切⊙O于A,PB切⊙O于B,
由切线长定理知,∠1=∠2,PA=PB,
∴△ABP是等腰三角形,
∵∠1=∠2,
∴AB⊥OP(等腰三角形三线合一),
故A,B,C正确,
根据切割线定理知:PA
2
=PC·(PO+OC),因此D错误.
故选D.
考点梳理
考点
分析
点评
切线长定理;等腰三角形的性质.
由切线长定理可判断出A、B选项均正确.易知△ABP是等腰三角形,根据等腰三角形三线合一的特点,可求出AB⊥OP,故C正确.而D选项显然不符合切割线定理,因此D错误.
本题利用了切线长定理,等腰三角形的性质求解.
找相似题
(2008·上海)如图,从圆O外一点P引圆O的两条切线PA,PB,切点分别为A,B.如果∠APB=60°,PA=8,那么弦AB的长是( )
(2008·凉山州)如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,已知∠BAC=35°,∠P的度数为( )
(2007·大连)如图,AB、AC是⊙O的两条切线,B、C是切点,若∠A=70°,则∠BOC的度数为( )
(2004·云南)如图,若△ABC的三边长分别为AB=9,BC=5,CA=6,△ABC的内切圆⊙O切AB、BC、AC于D、E、F,则AF的长为( )
(2000·金华)如图,圆外切等腰梯形ABCD的中位线EF=15cm,那么等腰梯形ABCD的周长等于( )