试题

题目:
青果学院如图,在梯形ABCD中,AB∥CD,⊙O为内切圆,E为切点.若AO=8cm,DO=6cm,求OE的长.
答案
解:∵AB∥CD,⊙O为内切圆,
∴∠OAD+∠ODA=90°,
∴∠AOD=90°,
∵AO=8cm,DO=6cm,
∴AD=10cm,
∵OE⊥AD,
∴AD·OE=OD·OA,
∴OE=4.8cm.
解:∵AB∥CD,⊙O为内切圆,
∴∠OAD+∠ODA=90°,
∴∠AOD=90°,
∵AO=8cm,DO=6cm,
∴AD=10cm,
∵OE⊥AD,
∴AD·OE=OD·OA,
∴OE=4.8cm.
考点梳理
切线长定理.
由⊙O为内切圆,则AO、DO为角平分线,则∠AOD=90°,由勾股定理求得AD,再由切线的性质得OE⊥AD,由三角形的面积公式求出OE的长.
本题考查了内心的性质、切线的性质、勾股定理、三角形的面积,要熟练掌握.
计算题.
找相似题