答案
(1)证明:∵⊙O切梯形ABCD于E、M、F、N,由切线长定理:AE=AN,BE=BM,DF=DN,CF=CM,
∴AE+BE+DF+CF=AN+BM+DN+CM,
∴AB+DC=AD+BC;

(2)解:连OE、ON、OM、OF,
∵OE=ON,AE=AN,OA=OA,
∴△OAE≌△OAN,
∴∠OAE=∠OAN.
同理,∠ODN=∠ODF.
∴∠OAN+∠ODN=∠OAE+∠ODE.
又∵AB∥DC,∠EAN+∠CDN=180°,
∴∠OAN+∠ODN=
×180°=90°,
∴∠AOD=180°-90°=90°.
(1)证明:∵⊙O切梯形ABCD于E、M、F、N,由切线长定理:AE=AN,BE=BM,DF=DN,CF=CM,
∴AE+BE+DF+CF=AN+BM+DN+CM,
∴AB+DC=AD+BC;

(2)解:连OE、ON、OM、OF,
∵OE=ON,AE=AN,OA=OA,
∴△OAE≌△OAN,
∴∠OAE=∠OAN.
同理,∠ODN=∠ODF.
∴∠OAN+∠ODN=∠OAE+∠ODE.
又∵AB∥DC,∠EAN+∠CDN=180°,
∴∠OAN+∠ODN=
×180°=90°,
∴∠AOD=180°-90°=90°.