试题

题目:
青果学院如图所示,P是⊙O外一点,PA,PB分别和⊙O切于A,B两点,C是
AB
上任意一点,过C作⊙O的切线分别交PA,PB于D,E.
(1)若△PDE的周长为10,则PA的长为
5
5

(2)连接CA、CB,若∠P=50°,则∠BCA的度数为
115
115
度.
答案
5

115

青果学院解:(1)∵PA、PB、DE分别切⊙O于A、B、C,
∴PA=PB,DA=DC,EC=EB;
∴C△PDE=PD+DE+PE=PD+DA+EB+PE=PA+PB=10;
∴PA=PB=5;

(2)连接OA、OB、AC、BC,在⊙O上取一点F,连接AF、BF,
∵PA、PB分别切⊙O 于A、B;
∴∠PAO=∠PRO=90°
∴∠AOB=360°-90°-90°-50°=130°;
∴∠AFB=
1
2
∠AOB=65°,
∵∠AFB+∠BCA=180°
∴∠BCA=180°-65°=115°;
故答案是:5,115°.
考点梳理
切线长定理;切线的性质.
(1)由于PA、PB、DE都是⊙O的切线,可根据切线长定理将△PDE的周长转化为切线PA、PB的长.
(2)根据切线长定理即可证得△PEF 周长等于2PA即可求解;根据切线的性质以及四边形的内角和定理即可求得∠AOB的度数,然后根据∠EOF=
1
2
∠AOB即可求出∠BCA的度数.
本题主要考查了切线长定理,正确理解图形中的线段与角之间的关系是解题的关键.
找相似题