试题
题目:
如图,PA、PB、DE分别切⊙O于A、B、C,⊙O的半径为6cm,OP的长为10cm,则△PDE的周长是
16cm
16cm
.
答案
16cm
解:连接OA.
∵PA、PB、DE分别切⊙O于A、B、C点,
∴BD=CD,CE=AE,PA=PB,OA⊥AP.
在直角三角形OAP中,根据勾股定理,得AP=8,
∴△PDE的周长为2AP=16.
故选答案为16cm.
考点梳理
考点
分析
点评
专题
切线长定理.
根据切线的性质,得到直角三角形OAP,根据勾股定理求得PA的长;根据切线长定理,得BD=CD,CE=AE,PA=PB,从而求解.
本题考查了切线长定理和勾股定理,是基础知识比较简单.
计算题.
找相似题
(2008·上海)如图,从圆O外一点P引圆O的两条切线PA,PB,切点分别为A,B.如果∠APB=60°,PA=8,那么弦AB的长是( )
(2008·凉山州)如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,已知∠BAC=35°,∠P的度数为( )
(2007·大连)如图,AB、AC是⊙O的两条切线,B、C是切点,若∠A=70°,则∠BOC的度数为( )
(2004·云南)如图,若△ABC的三边长分别为AB=9,BC=5,CA=6,△ABC的内切圆⊙O切AB、BC、AC于D、E、F,则AF的长为( )
(2000·金华)如图,圆外切等腰梯形ABCD的中位线EF=15cm,那么等腰梯形ABCD的周长等于( )