试题
题目:
如图,P是⊙O的直径AB的延长线上一点,PC、PD切⊙O于点C、D.若PA=6,⊙O的半径为2,则∠CPD=
60°
60°
.
答案
60°
解:∵PA=6,⊙O的半径为2,
∴PB=PA-AB=6-4=2,
∴OP=4,
∵PC、PD切⊙O于点C、D.
∴∠OPC=∠OPD,
∴CO⊥PC,
∴sin∠OPC=
2
4
=
1
2
,
∴∠OPC=30°,
∴∠CPD=60°,
故答案为:60°.
考点梳理
考点
分析
点评
切线长定理;含30度角的直角三角形.
根据切线的性质定理和切线长定理求出OP=4,∠OPC=∠OPD,再利用解直角三角形的知识求出∠OPC=30°,即可得出答案.
此题主要考查了切线的性质定理和切线长定理以及解直角三角形的知识,根据已知得出OP=4,进而求出∠OPC=30°是解题关键.
找相似题
(2008·上海)如图,从圆O外一点P引圆O的两条切线PA,PB,切点分别为A,B.如果∠APB=60°,PA=8,那么弦AB的长是( )
(2008·凉山州)如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,已知∠BAC=35°,∠P的度数为( )
(2007·大连)如图,AB、AC是⊙O的两条切线,B、C是切点,若∠A=70°,则∠BOC的度数为( )
(2004·云南)如图,若△ABC的三边长分别为AB=9,BC=5,CA=6,△ABC的内切圆⊙O切AB、BC、AC于D、E、F,则AF的长为( )
(2000·金华)如图,圆外切等腰梯形ABCD的中位线EF=15cm,那么等腰梯形ABCD的周长等于( )