试题
题目:
(2009·河西区一模)如图,已知PA,PB分别切⊙O于A、B,CD切⊙O于E,PO=13,AO=5,则△PCD周长为
24
24
.
答案
24
解:连接OB.
∵PA是⊙O的切线,点A是切点,
∴PA⊥OA;
∴PA=
PO
2
-
OA
2
=12;
∵PA、PB为圆的两条相交切线,
∴PA=PB;
同理可得:CA=CE,DE=DB.
∵△PCD的周长=PC+CE+ED+PD,
∴△PCD的周长=PC+CA+BD+PD=PA+PB=2PA,
∴△PCD的周长=24;
故答案是:24.
考点梳理
考点
分析
点评
专题
切线长定理.
由切线长定理可得PA=PB,DA=DE,CE=EB,由于△PCD的周长=PC+CE+ED+PD,所以△PCD的周长=PC+CB+AD+PD=PA+PB=2PA,故可求得三角形的周长.
本题考查了切线的性质以及切线长定理的运用.切线长定理:从圆外一点引圆的两条切线,它们的切线长长度相等,圆心和这一点的连线,平分这两条切线的夹角.
推理填空题.
找相似题
(2008·上海)如图,从圆O外一点P引圆O的两条切线PA,PB,切点分别为A,B.如果∠APB=60°,PA=8,那么弦AB的长是( )
(2008·凉山州)如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,已知∠BAC=35°,∠P的度数为( )
(2007·大连)如图,AB、AC是⊙O的两条切线,B、C是切点,若∠A=70°,则∠BOC的度数为( )
(2004·云南)如图,若△ABC的三边长分别为AB=9,BC=5,CA=6,△ABC的内切圆⊙O切AB、BC、AC于D、E、F,则AF的长为( )
(2000·金华)如图,圆外切等腰梯形ABCD的中位线EF=15cm,那么等腰梯形ABCD的周长等于( )