试题
题目:
如图,PA、PB是⊙O的两条切线,A、B为切点,连接OP交AB于点C,连接OA、OB,则图中等腰三角形、直角三角形的个数分别为( )
A.1,0
B.2,2
C.2,6
D.1,6
答案
C
解:因为OA、OB为圆O的半径,所以OA=OB,所以△AOB为等腰三角形,
根据切线长定理,PA=PB,故△APB为等腰三角形,共两个,
根据切线长定理,PA=PB,∠APC=∠BPC,PC=PC,所以△PAC≌△PBC,
故AB⊥PE,根据切线的性质定理∠OAP=∠OBP=90°,
所以直角三角形有:△AOC,△AOP,△APC,△OBC,△OBP,△CBP,共6个.
故选C.
考点梳理
考点
分析
点评
切线的性质;等腰三角形的判定;勾股定理的逆定理;切线长定理.
根据切线长定理及半径相等得,△APB为等腰三角形,△AOB为等腰三角形,共两个;
根据切线长定理和等腰三角形三线合一的性质,直角三角形有:△AOC,△AOP,△APC,△OBC,△OBP,△CBP,共6个.
此题综合考查了切线的性质和切线长定理及等腰三角形的判定,有利于培养同学们良好的思维品质.
找相似题
(2008·上海)如图,从圆O外一点P引圆O的两条切线PA,PB,切点分别为A,B.如果∠APB=60°,PA=8,那么弦AB的长是( )
(2008·凉山州)如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,已知∠BAC=35°,∠P的度数为( )
(2007·大连)如图,AB、AC是⊙O的两条切线,B、C是切点,若∠A=70°,则∠BOC的度数为( )
(2004·云南)如图,若△ABC的三边长分别为AB=9,BC=5,CA=6,△ABC的内切圆⊙O切AB、BC、AC于D、E、F,则AF的长为( )
(2000·金华)如图,圆外切等腰梯形ABCD的中位线EF=15cm,那么等腰梯形ABCD的周长等于( )