试题

题目:
青果学院如图所示,P是⊙O外一点,PA,PB分别和⊙O切于A,B两点,C是
AB
上任意一点,过C作⊙O的切线分别交PA,PB于D,E.若△PDE的周长为12,则PA的长为(  )



答案
B
解:∵PA,PB分别和⊙O切于A,B两点,
∴PA=PB,
∵DE是⊙O的切线,
∴DA=DC,EB=EC,
∵△PDE的周长为12,
即PD+DE+PE=PD+DC+EC+PE=PD+AD+EB+PE=PA+PB=2PA=12,
∴PA=6.
故选B.
考点梳理
切线长定理.
由PA,PB分别和⊙O切于A,B两点与DE是⊙O的切线,根据切线长定理,即可得PA=PB,DA=DC,EB=EC,又由△PDE的周长为12,易求得PA+PB=12,则可求得答案.
此题考查了切线长定理.此题难度不大,解题的关键是熟练应用切线长定理,注意数形结合思想与整体思想的应用.
找相似题