试题
题目:
(2000·吉林)如图,⊙O的外切梯形ABCD中,若AD∥BC,那么∠DOC的度数为( )
A.70°
B.90°
C.60°
D.45°
答案
B
解:∵DA、CD、CB都与⊙O相切,
∴∠ADO=∠ODC,∠OCD=∠OCB;
∵AD∥BC,
∴∠ADC+∠BCD=180°;
∴∠ODC+∠OCD=
1
2
(∠ADC+∠BCD)=
1
2
×180°=90°,即∠DOC=90°;
故选B.
考点梳理
考点
分析
点评
专题
切线长定理;平行线的性质.
由于AD、DC、CB都是⊙O的切线,根据切线长定理知:∠ADO=∠CDO,∠DCO=∠BCO;而AD∥BC,则2∠ODC和2∠OCD互补,由此可求得∠DOC的度数.
此题主要考查的是切线长定理及平行线的性质.
计算题;压轴题.
找相似题
(2008·上海)如图,从圆O外一点P引圆O的两条切线PA,PB,切点分别为A,B.如果∠APB=60°,PA=8,那么弦AB的长是( )
(2008·凉山州)如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,已知∠BAC=35°,∠P的度数为( )
(2007·大连)如图,AB、AC是⊙O的两条切线,B、C是切点,若∠A=70°,则∠BOC的度数为( )
(2004·云南)如图,若△ABC的三边长分别为AB=9,BC=5,CA=6,△ABC的内切圆⊙O切AB、BC、AC于D、E、F,则AF的长为( )
(2000·金华)如图,圆外切等腰梯形ABCD的中位线EF=15cm,那么等腰梯形ABCD的周长等于( )