试题
题目:
如图,在一个大正方形内,放入三个面积相等的小正方形纸片,这三张纸片盖住的总面积是24平方厘米,且未盖住的面积比小正方形面积的四分之一还少3平方厘米,则大正方形的面积是(单位:平方厘米)( )
A.40
B.25
C.26
D.36
答案
B
解:设小正方形的边长为a,大正方形的边长为b,
由这三张纸片盖住的总面积是24平方厘米,可得ab+a(b-a)=24 ①,
由未盖住的面积比小正方形面积的四分之一还少3平方厘米,可得(b-a)
2
=
1
4
a
2
-3,②
将①②联立解方程组可得:a=4,b=5,
∴大正方形的边长为5,
∴面积是25.
故选B.
考点梳理
考点
分析
点评
专题
正方形的判定与性质.
设小正方形的边长为a,大正方形的边长为b,由正方形的面积公式,根据题意列出方程组解方程组得出大正方形的边长,则可求出面积.
本题考查了正方形的性质及面积公式,难度较大,关键根据题意列出方程.
计算题.
找相似题
在四边形ABCD中,AD=DC,∠ADC=∠ABC=90°,DE⊥AB于E,若四边形ABCD的面积为8,则DE=( )
在直角三角形ABC中,∠C=90°,BC=2,以AB为边作正方形ABDE,连接AD、BE交O,CO=
3
2
,则AC的长为( )
(2012·惠山区一模)如图在三角形纸片ABC中,已知∠ABC=90°,AC=5,BC=4,过点A作直线l平行于BC,折叠三角形纸片ABC,使直角顶点B落在直线l上的点P处,折痕为MN,当点P在直线l上移动时,折痕的端点M、N也随之移动,若限定端点M、N分别在AB、BC边上移动,则线段AP长度的最大值与最小值的差为
7
-1
7
-1
.
(2011·房山区一模)如图,以边长为1的正方形的四边中点为顶点作四边形,再以所得四边形四边中点为顶点作四边形,…依次作下去,图中所作的第三个四边形的周长为
2
2
;所作的第n个四边形的周长为
4
(
2
2
)
n-1
4
(
2
2
)
n-1
.
如图,在正方形ABCD中,过B作一直线与CD相交于点E,过A作AF垂直BE于点F,过C作CG垂直BE于点G,在FA上截取FH=FB,再过H作HP垂直AF交AB于P.若CG=3.则△CGE与四边形BFHP的面积之和为
9
9
.