试题

题目:
在边长为4cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连结PB、PQ,则△PBQ周长的最小值为
2
5
+2
2
5
+2
cm.
答案
2
5
+2

青果学院解:连接DE,交AC于点P,连接BD.
∵点B与点D关于AC对称,
∴DQ的长即为PQ+PB的最小值,
∵AB=4,Q是BC的中点,
∴CQ=2,
在Rt△CDE中,
DQ=
CD2+CQ2
=
42+22
=2
5

∴△PBQ周长的最小值=2
5
+2.
故答案为:2
5
+2.
考点梳理
轴对称-最短路线问题;正方形的性质.
由于点B与点D关于AC对称,所以如果连接DQ,交AC于点P,则PE+PB的值最小.在Rt△CDE中,由勾股定理先计算出DE的长度,即为PQ+PB的最小值,进而可得出结论.
本题考查了轴对称-最短路线问题和正方形的性质,根据两点之间线段最短,可确定点P的位置,进而得出结论.
找相似题