试题
题目:
已知:如图,正方形ABCD中,CM=CD,MN⊥AC,连接CN,则∠DCN=
22.5
22.5
=
1
4
1
4
∠B,∠MNC=
67.5°
67.5°
=
3
4
3
4
∠B.
答案
22.5
1
4
67.5°
3
4
解;在Rt△MNC和Rt△DNC中,CM=CD,NC=NC
∴根据勾股定理可以求得MN=DN,
∴Rt△MNC≌Rt△DNC,
∴∠DCN=∠MCN,
∵正方形对角线AC即角平分线,
∴∠DCN=
1
2
∠DCA=22.5°,
∵∠MNC+∠MCN=90°,
∴∠MCN=90°-22.5°=67.5°,
∵∠B=90°,
∴∠DCN=
1
4
∠B,
∠MNC=
3
4
∠B.
故答案为 22.5°,
1
4
,67.5°,
3
4
.
考点梳理
考点
分析
点评
专题
正方形的性质;三角形内角和定理;全等三角形的判定与性质;角平分线的性质.
在Rt△MNC和Rt△DNC中,MC=DC,NC=NC,根据勾股定理即可得MN=DN,即可证明Rt△MNC≌Rt△DNC,故∠DCN=
1
2
∠DCA,即可计算∠MNC.
本题考查了正方形各边长相等、各内角均为直角的性质,考查了全等三角形的判定和全等三角形对应角相等的性质,本题中求证Rt△MNC≌Rt△DNC是解题的关键.
计算题.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线 ④∠EAM=∠ABC,其中正确结论的个数是( )
(2013·连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
(2013·东营)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:
(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S
△AOB
=S
四边形DEOF
中正确的有( )