试题
题目:
(2010·滨州)如图,四边形ABCD,E、F、G、H分别是AB、BC、CD、DA的中点.
(1)请判断四边形EFGH的形状?并说明为什么;
(2)若使四边形EFGH为正方形,那么四边形ABCD的对角线应具有怎样的性质?
答案
解:(1)如图,四边形EFGH是平行四边形.
连接AC,BD,
∵E、F分别是AB、BC的中点,
∴EF∥AC,EF=
1
2
AC
同理HG∥AC,
HG=
1
2
AC
∴EF∥HG,EF=HG
∴EFGH是平行四边形;
(2)四边形ABCD的对角线垂直且相等.
∵四边形EFGH为正方形,
∴EH⊥EF,EH=EF,
∵E、H、F分别是AB、DA、BC的中点,
∴EH=
1
2
BD,EF=
1
2
AC,
∴BD=AC,
∵EH为三角形ABD的中位线,
∴EH∥BD,
∴∠HEF=∠ENM=90°,
∵EF为三角形ABC的中位线,
∴EF∥AC,
∴∠AMN=90°,
∴AC⊥BD,
∴ABCD的对角线应该互相垂直且相等.
解:(1)如图,四边形EFGH是平行四边形.
连接AC,BD,
∵E、F分别是AB、BC的中点,
∴EF∥AC,EF=
1
2
AC
同理HG∥AC,
HG=
1
2
AC
∴EF∥HG,EF=HG
∴EFGH是平行四边形;
(2)四边形ABCD的对角线垂直且相等.
∵四边形EFGH为正方形,
∴EH⊥EF,EH=EF,
∵E、H、F分别是AB、DA、BC的中点,
∴EH=
1
2
BD,EF=
1
2
AC,
∴BD=AC,
∵EH为三角形ABD的中位线,
∴EH∥BD,
∴∠HEF=∠ENM=90°,
∵EF为三角形ABC的中位线,
∴EF∥AC,
∴∠AMN=90°,
∴AC⊥BD,
∴ABCD的对角线应该互相垂直且相等.
考点梳理
考点
分析
点评
专题
平行四边形的判定;三角形中位线定理;正方形的性质.
(1)连接AC,利用中位线定理即可证明四边形EFGH是平行四边形;
(2)由于四边形EFGH为正方形,那么它的邻边互相垂直且相等,根据中位线定理可以推出四边形ABCD的对角线应该互相垂直且相等.
此题主要考查了三角形的中位线定理,及平行四边形的判定,正方形的性质等知识.
证明题.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线 ④∠EAM=∠ABC,其中正确结论的个数是( )
(2013·连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
(2013·东营)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:
(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S
△AOB
=S
四边形DEOF
中正确的有( )