试题
题目:
(2010·海南)如图,四边形ABCD和四边形AEFG均为正方形,连接BG与DE相交于点H.证明:△ABG≌△ADE.
答案
证明:在正方形ABCD和正方形AEFG中,
∠GAE=∠BAD=90°,
且∠GAE+∠EAB=∠BAD+∠EAB,
即∠GAB=∠EAD,
在△ABG和△ADE中,
GA=EA
∠GAB=∠
AD=AB
EAD
,
∴△ABG≌△ADE(SAS).
证明:在正方形ABCD和正方形AEFG中,
∠GAE=∠BAD=90°,
且∠GAE+∠EAB=∠BAD+∠EAB,
即∠GAB=∠EAD,
在△ABG和△ADE中,
GA=EA
∠GAB=∠
AD=AB
EAD
,
∴△ABG≌△ADE(SAS).
考点梳理
考点
分析
点评
专题
正方形的性质;全等三角形的判定与性质.
在正方形ABCD中,AB=AD,在正方形AEFG中,GA=EA,要求证△ABG≌△ADE,求证∠GAB=∠EAD即可.
本题考查了正方形各边相等、各内角为直角的性质,考查了全等三角形的判定,本题中求证∠GAB=∠EAD是解题的关键.
证明题;压轴题.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线 ④∠EAM=∠ABC,其中正确结论的个数是( )
(2013·连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
(2013·东营)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:
(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S
△AOB
=S
四边形DEOF
中正确的有( )