题目:
(2012·黑龙江)在△ABC中,∠BAC=90°,AB=AC,若点D在线段BC上,以AD为边长作正方形ADEF,如图1,易证:∠AFC=∠ACB+∠DAC;
(1)若点D在BC延长线上,其他条件不变,写出∠AFC、∠ACB、∠DAC的关系,并结合图2给出证明;
(2)若点D在CB延长线上,其他条件不变,直接写出∠AFC、∠ACB、∠DAC的关系式.
答案
解:(1)关系:∠AFC=∠ACB-∠DAC,…(2分)
证明:∵四边形ADEF为正方形,
∴AD=AF,∠FAD=90°,
∵∠BAC=90°,∠FAD=90°,
∴∠BAC+∠CAD=∠FAD+∠CAD,即∠BAD=∠CAF,…(3分)
在△ABD和△ACF中,
,
∴△ABD≌△ACF(SAS),…(4分)
∴∠AFC=∠ADB,
∵∠ACB是△ACD的一个外角,
∴∠ACB=∠ADB+∠DAC,…(5分)
∴∠ADB=∠ACB-∠DAC,
∵∠ADB=∠AFC,
∴∠AFC=∠ACB-∠DAC;…(6分)
(2)∠AFC、∠ACB、∠DAC满足的关系式为:∠AFC+∠DAC+∠ACB=180°,…(8分)
证明:∵四边形ADEF为正方形,
∴∠DAF=90°,AD=AF,
又∠BAC=90°,
∴∠DAF=∠BAC,
∴∠DAF-∠BAF=∠BAC-∠BAF,即∠DAB=∠FAC,
在△ABD和△ACF中,
,
∴△ABD≌△ACF(SAS),
∴∠ADB=∠AFC,
在△ADC中,∠ADB+∠ACB+∠DAC=180°,
则∠AFC+∠ACB+∠DAC=180°.
解:(1)关系:∠AFC=∠ACB-∠DAC,…(2分)
证明:∵四边形ADEF为正方形,
∴AD=AF,∠FAD=90°,
∵∠BAC=90°,∠FAD=90°,
∴∠BAC+∠CAD=∠FAD+∠CAD,即∠BAD=∠CAF,…(3分)
在△ABD和△ACF中,
,
∴△ABD≌△ACF(SAS),…(4分)
∴∠AFC=∠ADB,
∵∠ACB是△ACD的一个外角,
∴∠ACB=∠ADB+∠DAC,…(5分)
∴∠ADB=∠ACB-∠DAC,
∵∠ADB=∠AFC,
∴∠AFC=∠ACB-∠DAC;…(6分)
(2)∠AFC、∠ACB、∠DAC满足的关系式为:∠AFC+∠DAC+∠ACB=180°,…(8分)
证明:∵四边形ADEF为正方形,
∴∠DAF=90°,AD=AF,
又∠BAC=90°,
∴∠DAF=∠BAC,
∴∠DAF-∠BAF=∠BAC-∠BAF,即∠DAB=∠FAC,
在△ABD和△ACF中,
,
∴△ABD≌△ACF(SAS),
∴∠ADB=∠AFC,
在△ADC中,∠ADB+∠ACB+∠DAC=180°,
则∠AFC+∠ACB+∠DAC=180°.