试题
题目:
正方形ABCD中,两个顶点到直线l的距离相等,且均为另外两个顶点到直线l的距离的2倍,则这样的直线l有
12
12
条.
答案
12
解:符合题目要求的一共12条直线,
下图虚线所示直线均符合题目要求.
故答案为:12.
考点梳理
考点
分析
点评
正方形的性质.
根据正方形的性质,一个值为另一个值的2倍,所以本题需要分类讨论,①该直线切割正方形,确定直线的位置;②该直线在正方形外,确定直线的位置;③该直线过正方形的中心对称点,确定直线的位置.
本题考查了正方形的性质;通过分类讨论计算点到直线的距离,找到直线的位置是解题的关键.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线 ④∠EAM=∠ABC,其中正确结论的个数是( )
(2013·连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
(2013·东营)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:
(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S
△AOB
=S
四边形DEOF
中正确的有( )