试题
题目:
已知,如图,四边形ABCD是正方形,E、F分别是AB和AD延长线上的点,且BE=DF,则∠CEF=
45°
45°
.
答案
45°
解:∵四边形ABCD是正方形,
∴CD=BC,∠CDF=∠CBE=90°,
在△CDF和△CBE中
CD=BC
∠CDF=∠CBE
DF=BE
,
∴△CDF≌△CBE,
∴CF=CE,∠DCF=∠BCE.
∵∠DCE+∠BCE=90°,
∴∠DCF+∠BCE=90°.
即∠FCE=90°,
∴△FEC是等腰直角三角形.
∴∠CEF=45°.
故答案为:45°.
考点梳理
考点
分析
点评
正方形的性质;全等三角形的判定与性质;等腰直角三角形.
由四边形ABCD是正方形可以得出CD=BC,∠CDF=∠CBE=90°,从而可以得出△CDF≌△CBE,就可以得出CF=CE,∠DCF=∠BCE,可以求得△ECF是等腰直角三角形,可以求出∠CEF的度数.
本题考查了正方形的性质,全等三角形的判定与性质的运用,等腰直角三角形的判定与性质的运用.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线 ④∠EAM=∠ABC,其中正确结论的个数是( )
(2013·连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
(2013·东营)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:
(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S
△AOB
=S
四边形DEOF
中正确的有( )