HC⊥CE,| DE |
| BE |
| S△ECH |
| S△GCF |

| S△ECF+S△FCH |
| S△FCG |
| 1 |
| 2 |
| S△ECF |
| S△FCG |
| 1 |
| 2 |
| EM |
| CG |
| DE |
| EB |
| AD |
| BG |
| AD |
| BG-AD |
| DE |
| BE-DE |
| AD |
| CG |
| x |
| 1-x |
| EM |
| BC |
| DE |
| BD |
| x |
| 1+x |
| EM |
| CG |
| EM·AD |
| BC·CG |
| x2 |
| 1-x2 |
| 1 |
| 2 |
| x2 |
| 1-x2 |
| 1+x2 |
| 2(1-x2) |

| S△ECF+S△FCH |
| S△FCG |
| 1 |
| 2 |
| S△ECF |
| S△FCG |
| 1 |
| 2 |
| EM |
| CG |
| DE |
| EB |
| AD |
| BG |
| AD |
| BG-AD |
| DE |
| BE-DE |
| AD |
| CG |
| x |
| 1-x |
| EM |
| BC |
| DE |
| BD |
| x |
| 1+x |
| EM |
| CG |
| EM·AD |
| BC·CG |
| x2 |
| 1-x2 |
| 1 |
| 2 |
| x2 |
| 1-x2 |
| 1+x2 |
| 2(1-x2) |
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线 ④∠EAM=∠ABC,其中正确结论的个数是( )
(2013·连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
(2013·东营)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论: