试题
题目:
(2005·扬州)(1)计算:
(
3
)
2
+4×(-
1
2
)-
2
3
;
(2)已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且EA⊥AF.求证:DE=BF.
答案
(1)解:原式=3-2-8=-7;
(2)证明:∵∠FAB+∠BAE=90°,∠DAE+∠BAE=90°,
∴∠FAB=∠DAE,
∵∠AB=AD,∠ABF=∠ADE,
∴△AFB≌△ADE,
∴DE=BF.
(1)解:原式=3-2-8=-7;
(2)证明:∵∠FAB+∠BAE=90°,∠DAE+∠BAE=90°,
∴∠FAB=∠DAE,
∵∠AB=AD,∠ABF=∠ADE,
∴△AFB≌△ADE,
∴DE=BF.
考点梳理
考点
分析
点评
专题
实数的运算;直角三角形全等的判定;正方形的性质.
(1)按有理数的运算法则计算即可;
(2)由同角的余角相等知,∠FAB=∠DAE,由正方形的性质知,∠AB=AD,∠ABF=∠ADE=90°,则ASA证得△AFB≌△ADE·DE=BF.
此题即考查了实数的运算又考查了正方形的性质.学生对学过的知识要系统起来.
计算题;证明题.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线 ④∠EAM=∠ABC,其中正确结论的个数是( )
(2013·连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
(2013·东营)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:
(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S
△AOB
=S
四边形DEOF
中正确的有( )